N°23-39: Mixed-Frequency Predictive Regressions with Parameter Learning
We explore the performance of mixed-frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed-frequency models improve predictability, not only because of the combination of predictors with different frequencies but also due to the preservation of high-frequency features such as time-varying volatility. Temporally aggregated models misspecify the evolution frequency of the volatility dynamics, resulting in poor volatility timing and worse portfolio performance than the mixed-frequency specification. These results highlight the importance of preserving the potential mixed-frequency nature of predictors and volatility in predictive regressions.